首页> 外文OA文献 >Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes
【2h】

Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes

机译:通过电可切换纳米毛细管阵列膜实现的三维集成微流控架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The extension of microfluidic devices to three dimensions requires innovative methods to interface fluidic layers. Externally controllable interconnects employing nanocapillary array membranes (NCAMs) have been exploited to produce hybrid three-dimensional fluidic architectures capable of performing linked sequential chemical manipulations of great power and utility. Because the solution Debye length, κ−1, is of the order of the channel diameter, a, in the nanopores, fluidic transfer is controlled through applied bias, polarity and density of the immobile nanopore surface charge, solution ionic strength and the impedance of the nanopore relative to the microfluidic channels. Analyte transport between vertically separated microchannels can be saturated at two stable transfer levels, corresponding to reverse and forward bias. These NCAM-mediated integrated microfluidic architectures have been used to achieve highly reproducible and tunable injections down to attoliter volumes, sample stacking for preconcentration, preparative analyte band collection from an electrophoretic separation, and an actively-tunable size-dependent transport in hybrid structures with grafted polymers displaying thermally-regulated swelling behavior. The synthetic elaboration of the nanopore interior has also been used to great effect to realize molecular separations of high efficiency. All of these manipulations depend critically on the transport properties of individual nanocapillaries, and the study of transport in single nanopores has recently attracted significant attention. Both computation and experimental studies have utilized single nanopores as test beds to understand the fundamental chemical and physical properties of chemistry and fluid flow at nanometer length scales.
机译:将微流体装置扩展到三个维度需要创新的方法来连接流体层。利用纳米毛细管阵列膜(NCAM)的外部可控互连已被开发来生产能够执行链接的顺序化学操作的,具有强大功能和实用性的混合三维流体架构。因为溶液的德拜长度κ-1约为通道直径a,在纳米孔中,通过施加的偏压,固定的纳米孔表面电荷的极性和密度,溶液离子强度和电极的阻抗来控制流体转移。相对于微流体通道的纳米孔。垂直分离的微通道之间的分析物传输可以在两个稳定的传输水平上达到饱和,这对应于反向和正向偏压。这些NCAM介导的集成微流控架构已用于实现低至attoliter体积的高度可重现和可调进样,用于预浓缩的样品堆叠,通过电泳分离制备制备的分析物带以及在具有接枝的杂化结构中主动调节尺寸依赖的转运聚合物表现出热调节的溶胀行为。纳米孔内部的合成加工也已被广泛使用,以实现高效的分子分离。所有这些操作都严重依赖于单个纳米毛细管的传输特性,最近对单个纳米孔中传输的研究引起了极大的关注。计算和实验研究都利用单个纳米孔作为测试床,以了解化学的基本化学和物理特性以及纳米级尺度上的流体流动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号